您的位置: 首頁 >綜合精選 >

柯西不等式(關(guān)于柯西不等式的簡介)

2022-09-03 03:06:09 編輯:曲天荷 來源:
導(dǎo)讀 大家好,柯西不等式,關(guān)于柯西不等式的簡介很多人還不知道,現(xiàn)在讓我們一起來看看吧!1、柯西不等式是由大數(shù)學(xué)家柯西(Cauchy)在研究數(shù)學(xué)分

大家好,柯西不等式,關(guān)于柯西不等式的簡介很多人還不知道,現(xiàn)在讓我們一起來看看吧!

1、柯西不等式是由大數(shù)學(xué)家柯西(Cauchy)在研究數(shù)學(xué)分析中的“流數(shù)”問題時得到的。

2、但從歷史的角度講,該不等式應(yīng)當(dāng)稱為Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亞科夫斯基-施瓦茨不等式】,因為,正是后兩位數(shù)學(xué)家彼此獨立地在積分學(xué)中推而廣之,才將這一不等式應(yīng)用到近乎完善的地步。

3、柯西不等式是由柯西在研究過程中發(fā)現(xiàn)的一個不等式,其在解決不等式證明的有關(guān)問題中有著十分廣泛的應(yīng)用,所以在高中數(shù)學(xué)提升中非常重要,是高中數(shù)學(xué)研究內(nèi)容之一。

本文關(guān)于柯西不等式的簡介就講解完畢,希望對大家有所幫助。


免責(zé)聲明:本文由用戶上傳,如有侵權(quán)請聯(lián)系刪除!

最新文章

精彩推薦

圖文推薦

點擊排行

2016-2022 All Rights Reserved.平安財經(jīng)網(wǎng).復(fù)制必究 聯(lián)系QQ   備案號:

本站除標(biāo)明“本站原創(chuàng)”外所有信息均轉(zhuǎn)載自互聯(lián)網(wǎng) 版權(quán)歸原作者所有。

郵箱:toplearningteam#gmail.com (請將#換成@)